skip to main content


Search for: All records

Creators/Authors contains: "Kravtsov, Andrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We investigate the formation (spin-up) of galactic discs in the artemis simulations of Milky Way (MW)-mass galaxies. In almost all galaxies, discs spin up at higher [Fe/H] than the MW. Those galaxies that contain an analogue of the Gaia Sausage-Enceladus (GSE) spin up at a lower average metallicity than those without. We identify six galaxies with spin-up metallicity similar to that of the MW, which formed their discs ∼8–11 Gyr ago. Five of these experience a merger similar to the GSE. The spin-up times correlate with the halo masses at early times: galaxies with early spin-up have larger virial masses at a lookback time tL = 12 Gyr. The fraction of stars accreted from outside the host galaxy is smaller in galaxies with earlier spin-ups. Accreted fractions small enough to be comparable to the MW are only found in galaxies with the earliest disc formation and large initial virial masses (M200c ≈ 2 × 1011 M⊙ at tL = 12 Gyr). We find that discs form when the halo’s virial mass reaches a threshold of M200c ≈ (6 ± 3) × 1011 M⊙, independent of the spin-up time. However, the failure to form a disc in other galaxies appears to be instead related to mergers at early times. We also find that discs form when the central potential is not particularly steep. Our results indicate that the MW assembled its mass and formed its disc earlier than the average galaxy of a similar mass.

     
    more » « less
  2. ABSTRACT

    Anomalously high nitrogen-to-oxygen abundance ratios [N/O] are observed in globular clusters (GCs), among the field stars of the Milky Way (MW), and even in the gas in a z ≈ 11 galaxy. Using data from the APOGEE Data Release 17 and the Gaia Data Release 3, we present several independent lines of evidence that most of the MW’s high-[N/O] stars were born in situ in massive bound clusters during the early, pre-disc evolution of the Galaxy. Specifically, we show that distributions of metallicity [Fe/H], energy, the angular momentum Lz, and distance of the low-metallicity high-[N/O] stars match the corresponding distributions of stars of the Aurora population and of the in situ GCs. We also show that the fraction of in situ field high-[N/O] stars, fN/O, increases rapidly with decreasing metallicity. During epochs when metallicity evolves from $\rm [Fe/H]=-1.5$ to $\rm [Fe/H]=-0.9$, the Galaxy spins up and transitions from a turbulent Aurora state to a coherently rotating disc. This transformation is accompanied by many qualitative changes. In particular, we show that high N/O abundances similar to those observed in GN-z11 were common before the spin-up ($\rm [Fe/H]\lesssim -1.5$) when up to $\approx 50~{{\ \rm per\ cent}}-70~{{\ \rm per\ cent}}$ of the in situ stars formed in massive bound clusters. The dramatic drop of fN/O at $\rm [Fe/H]\gtrsim -0.9$ indicates that after the disc emerges the fraction of stars forming in massive bound clusters decreases by two orders of magnitude.

     
    more » « less
  3. ABSTRACT

    We use the GRUMPY galaxy formation model based on a suite of zoom-in, high-resolution, dissipationless Λ Cold Dark Matter (ΛCDM) simulations of the Milky Way (MW) sized haloes to examine total matter density within the half-mass radius of stellar distribution, ρtot(< r1/2), of satellite dwarf galaxies around the MW hosts and their mass assembly histories. We compare model results to ρtot(< r1/2) estimates for observed dwarf satellites of the Milky Way spanning their entire luminosity range. We show that observed MW dwarf satellites exhibit a trend of decreasing total matter density within a half-mass radius, ρtot(< r1/2), with increasing stellar mass. This trend is in general agreement with the trend predicted by the model. None of the observed satellites are overly dense compared to the results of our ΛCDM-based model. We also show that although the halo mass of many satellite galaxies is comparable to the halo mass of the MW progenitor at z ≳ 10, at these early epochs halos that survive as satellites to z = 0 are located many virial radii away from the MW progenitors and thus do not have a chance to merge with it. Our results show that neither the densities estimated in observed Milky Way satellites nor their mass assembly histories pose a challenge to the ΛCDM model. In fact, the broad agreement between density trends with the stellar mass of the observed and model galaxies can be considered as yet another success of the model.

     
    more » « less
  4. ABSTRACT

    We examine the spatial distribution and orbital pole correlations of satellites in a suite of zoom-in high-resolution dissipationless simulations of Milky Way (MW)-sized haloes. We use the measured distribution to estimate the incidence of satellite configurations as flattened and as correlated in their orbital pole distribution as the satellite system of the MW. We confirm that this incidence is sensitive to the radial distribution of subhaloes and thereby to the processes that affect it, such as artificial disruption due to numerical effects and disruption due to the central disc. Controlling for the resolution effects and bracketing the effects of the disc, we find that the MW satellite system is somewhat unusual (at the ≈2–3σ level) but is statistically consistent with the Lambda cold dark matter model, in general agreement with results and conclusions of other recent studies.

     
    more » « less
  5. ABSTRACT

    We use GRUMPY, a simple regulator-type model for dwarf galaxy formation and evolution, to forward model the dwarf galaxy satellite population of the Milky Way (MW) using the Caterpillar zoom-in simulation suite. We show that luminosity and distance distributions of the model satellites are consistent with the distributions measured in the DES, PS1, and SDSS surveys, even without including a model for the orphan galaxies. We also show that our model for dwarf galaxy sizes can simultaneously reproduce the observed distribution of stellar half-mass radii, r1/2, of the MW satellites and the overall r1/2–M⋆ relation exhibited by observed dwarf galaxies. The model predicts that some of the observed faint stellar systems with r1/2 < 10 pc are ultra-faint dwarf galaxies. Scaling of the stellar mass M⋆ and peak halo mass Mpeak for the model satellites is not described by a power law, but has a clear flattening of M⋆–Mpeak scaling at $M_{\rm peak}\lt 10^8\, \, M_{\odot }$ imprinted by reionization. As a result, the fraction of low mass haloes ($M_{\rm peak}\lt 10^8 \, M_{\odot }$) hosting galaxies with MV < 0 is predicted to be 50 per cent at $M_{\rm peak}\sim 3.6 \times 10^7\, \, M_{\odot }$. We find that such high fraction at that halo mass helps to reproduce the number of dwarf galaxies discovered recently in the HSC-SSP survey. Using the model we forecast that there should be the total of $440^{+201}_{-147}$ (68 per cent confidence interval) MW satellites with MV < 0 and r1/2 > 10 pc within 300 kpc and make specific predictions for the HSC-SSP, DELVE-WIDE, and LSST surveys.

     
    more » « less
  6. ABSTRACT

    We present a simple regulator-type framework designed specifically for modelling formation of dwarf galaxies. Despite its simplicity, when coupled with realistic mass accretion histories of haloes from simulations and reasonable choices for model parameter values, the framework can reproduce a remarkably broad range of observed properties of dwarf galaxies over seven orders of magnitude in stellar mass. In particular, we show that the model can simultaneously match observational constraints on the stellar mass–halo mass relation, as well as observed relations between stellar mass and gas phase and stellar metallicities, gas mass, size, and star formation rate, as well as general form and diversity of star formation histories of observed dwarf galaxies. The model can thus be used to predict photometric properties of dwarf galaxies hosted by dark matter haloes in N-body simulations, such as colours, surface brightnesses, and mass-to-light ratios and to forward model observations of dwarf galaxies. We present examples of such modelling and show that colours and surface brightness distributions of model galaxies are in good agreement with observed distributions for dwarfs in recent observational surveys. We also show that in contrast with the common assumption, the absolute magnitude–halo mass relation is generally predicted to have a non-power law form in the dwarf regime, and that the fraction of haloes that host detectable ultra-faint galaxies is sensitive to reionization redshift (zrei) and is predicted to be consistent with observations for zrei ≲ 9.

     
    more » « less
  7. ABSTRACT

    We use accurate estimates of aluminium abundance from the APOGEE Data Release 17 and Gaia Early Data Release 3 astrometry to select a highly pure sample of stars with metallicity −1.5 ≲ [Fe/H] ≲ 0.5 born in-situ in the Milky Way proper. The low-metallicity ([Fe/H]  ≲ −1.3) in-situ component we dub Aurora is kinematically hot with an approximately isotropic velocity ellipsoid and a modest net rotation. Aurora stars exhibit large scatter in metallicity and in many element abundance ratios. The median tangential velocity of the in-situ stars increases sharply with metallicity between [Fe/H] = −1.3 and −0.9, the transition that we call the spin-up. The observed and theoretically expected age–metallicity correlations imply that this increase reflects a rapid formation of the MW disc over ≈1–2 Gyr. The transformation of the stellar kinematics as a function of [Fe/H] is accompanied by a qualitative change in chemical abundances: the scatter drops sharply once the Galaxy builds up a disc during later epochs corresponding to [Fe/H] > −0.9. Results of galaxy formation models presented in this and other recent studies strongly indicate that the trends observed in the MW reflect generic processes during the early evolution of progenitors of MW-sized galaxies: a period of chaotic pre-disc evolution, when gas is accreted along cold narrow filaments and when stars are born in irregular configurations, and subsequent rapid disc formation. The latter signals formation of a stable hot gaseous halo around the MW progenitor, which changes the mode of gas accretion and allows development of coherently rotating disc.

     
    more » « less
  8. Abstract

    We compare the performance of energy-based and entropy-conserving schemes for modeling nonthermal energy components, such as unresolved turbulence and cosmic rays, using idealized fluid dynamics tests and isolated galaxy simulations. While both methods are aimed to model advection and adiabatic compression or expansion of different energy components, the energy-based scheme numerically solves the nonconservative equation for the energy density evolution, while the entropy-conserving scheme uses a conservative equation for modified entropy. Using the standard shock tube and Zel’dovich pancake tests, we show that the energy-based scheme results in a spurious generation of nonthermal energy on shocks, while the entropy-conserving method evolves the energy adiabatically to machine precision. We also show that, in simulations of an isolatedLgalaxy, switching between the schemes results in ≈20%–30% changes of the total star formation rate and a significant difference in morphology, particularly near the galaxy center. We also outline and test a simple method that can be used in conjunction with the entropy-conserving scheme to model the injection of nonthermal energies on shocks. Finally, we discuss how the entropy-conserving scheme can be used to capture the kinetic energy dissipated by numerical viscosity into the subgrid turbulent energyimplicitly, without explicit source terms that require calibration and can be rather uncertain. Our results indicate that the entropy-conserving scheme is the preferred choice for modeling nonthermal energy components, a conclusion that is equally relevant for Eulerian and moving-mesh fluid dynamics codes.

     
    more » « less
  9. ABSTRACT

    We use the Auriga simulations to probe different satellite quenching mechanisms operating at different mass scales ($10^5 \, \mathrm{M}_\odot \lesssim M_\star \lesssim 10^{11} \, \mathrm{M}_\odot$) in Milky Way-like hosts. Our goal is to understand the origin of the satellite colour distribution and star-forming properties in both observations and simulations. We find that the satellite populations in the Auriga simulations, which was originally designed to model Milky Way-like host galaxies, resemble the populations in the Exploration of Local VolumE Satellites (ELVES) Survey and the Satellites Around Galactic Analogs (SAGA) survey in their luminosity function in the luminosity range −12 ≲ MV ≲ −15 and resemble ELVES in their quenched fraction and colour–magnitude distribution in the luminosity range −12 ≲ Mg ≲ −15. We find that satellites transition from blue colours to red colours at the luminosity range −15 ≲ Mg ≲ −12 in both the simulations and observations and we show that this shift is driven by environmental effects in the simulations. We demonstrate also that the colour distribution in both simulations and observations can be decomposed into two statistically distinct populations based on their morphological type or star-forming status that are statistically distinct. In the simulations, these two populations also have statistically distinct infall time distributions. The comparison presented here seems to indicate that this tension is resolved by the improved target selection of ELVES, but there are still tensions in understanding the colours of faint galaxies, of which ELVES appears to have a significant population of faint blue satellites not recovered in Auriga.

     
    more » « less
  10. null (Ed.)
    We compare the performance of energy-based and entropy-conservative schemes for modeling nonthermal energy components, such as unresolved turbulence and cosmic rays, using idealized fluid dynamics tests and isolated galaxy simulations. While both methods are aimed to model advection and adiabatic compression or expansion of different energy components, the energy-based scheme numerically solves the non-conservative equation for the energy density evolution, while the entropy-conserving scheme uses a conservative equation for modified entropy. Using the standard shock tube and Zel'dovich pancake tests, we show that the energy-based scheme results in a spurious generation of nonthermal energy on shocks, while the entropy-conserving method evolves the energy adiabatically to machine precision. We also show that, in simulations of an isolated Lstar galaxy, switching between the schemes results in ~20-30% changes of the total star formation rate and a significant difference in morphology, particularly near the galaxy center. We also outline and test a simple method that can be used in conjunction with the entropy-conserving scheme to model the injection of nonthermal energies on shocks. Finally, we discuss how the entropy-conserving scheme can be used to capture the kinetic energy dissipated by numerical viscosity into the subgrid turbulent energy implicitly, without explicit source terms that require calibration and can be rather uncertain. Our results indicate that the entropy-conserving scheme is the preferred choice for modeling nonthermal energy components, a conclusion that is equally relevant for Eulerian and moving-mesh fluid dynamics codes. 
    more » « less